On initial value and terminal value problems for subdiffusive stochastic Rayleigh-Stokes equation
نویسندگان
چکیده
In this paper, we study two stochastic problems for time-fractional Rayleigh-Stokes equation including the initial value problem and terminal problem. Here, are perturbed by Wiener process, fractional derivative taken in sense of Riemann-Liouville, source function time-spatial noise nonlinear satisfy globally Lipschitz conditions. We attempt to give some existence results regularity properties mild solution each
منابع مشابه
On initial value and terminal value problems for Hamilton-Jacobi equation
First order partial differential equations (PDE) are often the main tool to model problems in optimal control, differential games, image processing, physics, etc. Dependent upon the particular application, the boundary conditions are specified either at the initial time instant, leading to an initial value problem (IVP), or at the terminal time instant, leading to a terminal value problem (TVP)...
متن کاملMODIFIED K-STEP METHOD FOR SOLVING FUZZY INITIAL VALUE PROBLEMS
We are concerned with the development of a K−step method for the numerical solution of fuzzy initial value problems. Convergence and stability of the method are also proved in detail. Moreover, a specific method of order 4 is found. The numerical results show that the proposed fourth order method is efficient for solving fuzzy differential equations.
متن کاملInitial value problems for second order hybrid fuzzy differential equations
Usage of fuzzy differential equations (FDEs) is a natural way to model dynamical systems under possibilistic uncertainty. We consider second order hybrid fuzzy differentia
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete and Continuous Dynamical Systems-series B
سال: 2021
ISSN: ['1531-3492', '1553-524X']
DOI: https://doi.org/10.3934/dcdsb.2020289